Permutations with fixed pattern densities

نویسندگان

  • Richard Kenyon
  • Daniel Král
  • Charles Radin
  • Peter Winkler
چکیده

We study scaling limits of random permutations (“permutons”) constrained by having fixed densities of a finite number of patterns. We show that the limit shapes are determined by maximizing entropy over permutons with those constraints. In particular, we compute (exactly or numerically) the limit shapes with fixed 12 density, with fixed 12 and 123 densities, with fixed 12 density and the sum of 123 and 213 densities, and with fixed 123 and 321 densities. In the last case we explore a particular phase transition. To obtain our results, we also provide a description of permutons using a dynamic construction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Variational Principle for Permutations

We define an entropy function for scaling limits of permutations, called permutons, and prove that under appropriate circumstances, both the shape and number of large permutations with given constraints are determined by maximizing entropy over permutons with those constraints. We also describe a useful equivalent version of permutons using a recursive construction. This variational principle i...

متن کامل

Note on Packing Patterns in Colored Permutations

Packing patterns in permutations concerns finding the permutation with the maximum number of a prescribed pattern. In 2002, Albert, Atkinson, Handley, Holton and Stromquist showed that there always exists a layered permutation containing the maximum number of a layered pattern among all permutations of length n. Consequently the packing density for all but two (up to equivalence) patterns up to...

متن کامل

Statistics on Pattern-avoiding Permutations

This thesis concerns the enumeration of pattern-avoiding permutations with respect to certain statistics. Our first result is that the joint distribution of the pair of statistics ‘number of fixed points’ and ‘number of excedances’ is the same in 321-avoiding as in 132-avoiding permutations. This generalizes a recent result of Robertson, Saracino and Zeilberger, for which we also give another, ...

متن کامل

Multiple Pattern Avoidance with respect to Fixed Points and Excedances

We study the distribution of the statistics ‘number of fixed points’ and ‘number of excedances’ in permutations avoiding subsets of patterns of length 3. We solve all the cases of simultaneous avoidance of more than one pattern, giving generating functions enumerating these two statistics. Some cases are generalized to patterns of arbitrary length. For avoidance of one single pattern we give pa...

متن کامل

Mesh Patterns and the Expansion of Permutation Statistics as Sums of Permutation Patterns

Any permutation statistic f : S → C may be represented uniquely as a, possibly infinite, linear combination of (classical) permutation patterns: f = Στλf (τ)τ . To provide explicit expansions for certain statistics, we introduce a new type of permutation patterns that we call mesh patterns. Intuitively, an occurrence of the mesh pattern p = (π,R) is an occurrence of the permutation pattern π wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015